空气悬挂系统结构原理(空气避震和空气悬挂)

这篇文章给大家聊聊关于空气悬挂系统结构原理,以及空气避震和空气悬挂对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。

汽车空气悬挂的工作原理是什么

空气悬挂工作原理就是利用空气压缩机形成压缩空气,并通过压缩空气来调节汽车的离地高度。一般装备空气弹簧的车型在前轮和后轮的附近都设有离地距离传感器,按离地距离传感器的输出信号,行车电脑判断出车身高度的变化,再控制空气压缩机和排气阀门,使弹簧自动压缩或伸长,从而起到减震的效果。空气悬挂还使汽车增加一定的灵活性,当在高速行驶时,空气悬挂可以自动变硬来提高车身的稳定性,而长时间在低速不平的路面行驶时,行车电脑则会使悬挂变软来提高车辆的舒适性。空气悬挂也并不是最近几年才研发的新技术,它们的基本技术方案相似,主要包括内部装有压缩空气的空气弹簧和阻尼可变的减震器两部分。与传统钢制悬挂想比较,空气悬挂具有很多优势,最重要的一点就是弹簧的弹性系数也就是弹簧的软硬能根据需要自动调节。例如,高速行驶时悬挂可以变硬,以提高车身稳定性,长时间低速行驶时,控制单元会认为正在经过颠簸路面,以悬挂变软来提高减震舒适性。另外,车轮受到地面冲击产生的加速度也是空气弹簧自动调节时考虑的参数之一。例如高速过弯时,外侧车轮的空气弹簧和减震器就会自动变硬,以减小车身的侧倾,在紧急制动时电子模块也会对前轮的弹簧和减震器硬度进行加强以减小车身的惯性前倾。因此,装有空气弹簧的车型比其它汽车拥有更高的操控极限和舒适度。例如装备在 Maybach上的AIRMATIC.DC空气悬挂系统为简例说明弹簧软硬的变化。弹簧的弹性系数是通过橡胶皮腔中空气的流量来调节的。在短波路面或高速过弯时,皮腔中的部分气体会被锁定,在皮腔受压时,空气流量减小,令弹簧变硬,以减小车身起伏和提高车身稳定性。在普通路面上,所有空气都可以自由流动,皮腔受压时,空气流量加大,从而提供柔软的弹簧和最大程度的行驶舒适性。 Maybach的空气悬挂中的空气始终保持6-10个巴的压力。空气悬挂还将传统的底盘升降技术融入其中。高速行驶时,车身高度自动降低,从而提高贴地性能确保良好的高速行驶稳定性同时降低风阻和油耗。慢速通过颠簸路面时,底盘自动升高,以提高通过性能。另外,空气悬挂系统还能自动保持车身水平高度,无论空载满载,车身高度都能恒定不变,这样在任何载荷情况下,悬挂系统的弹簧行程都保持一定,从而使减震特性基本不会受到影响。因此即便是满载情况下,车身也很容易控制。这的确是平台技术的一个飞跃。 E53(X5)空气悬挂工作原理 E53(X5)所装配的空气悬挂系统分为单桥空气悬挂(只有后桥装备)和双桥空气悬挂两种(前、后桥都装备),根据装备的不同,其功能也不同! E53(X5)单桥空气悬挂透视图: E53(X5)单桥空气悬挂的工作模式和E39、E65、E66的单桥空气悬挂的工作模式相同,主要是根据车辆负载调节后桥的高低和增加车辆行驶稳定性。下面咱们来讨论E53(X5)双桥空气悬挂:空气弹簧气动系统的组成部分:供气装置后桥空气弹簧蓄压器阀门单元前桥空气弹簧减震支柱后部高度传感器前部高度传感器控制单元蓄压器阀门单元是一个新的部件蓄压器支持高度变化阀门单元上的 6个接头: 4个接头连接减震支柱一个接头连接蓄压器压力传感器和蓄压器一个接头连接供气装置 E53 air suspension供气装置已进行了匹配温度监控:温度超过 110摄氏度时关闭因为下沉速度很快,所以为空气干燥器设计了新的结构阀门已进行了匹配预控阀直接由控制单元控制排气阀为气动式受控高压排气阀带双桥空气弹簧的 E53双桥空气弹簧的优点:可以增加车辆的离地间隙可以减少车辆的离地间隙可通过按钮选择三种高度: A.越野:离地间隙增加 25 mm出于安全考虑,在车速高于 50 km/h时越野模式复位 B.进入:离地间隙减少 35 mm在速度低于 25 km/h时才执行这一改变速度超过 35 km/h时进入模式复位不能从任意某个中间状态开始执行升降底盘模式开关

空气悬挂气囊的工作原理

1,空气悬架的组成

空气悬架由压气机1,油水分离器2,调压阀3,储气筒4,高度控制阀6,控制连杆7,空气弹簧8,储气罐9,空气滤清器5、10和管路,导向传力杆,减振器,横向稳定杆等部分组成。

空气弹簧是在含有帘布层结构的橡胶气囊内充入空气,并以空气为介质,利用空气可以压缩的特点来实现弹性作用。

1)空气弹簧分类

囊式空气弹簧:以橡胶囊为主要元件的囊式空气弹簧,在用来承受内压张力的钢质腰环分割下,气囊被分为不同的节数,并据此分为单曲,双曲和多曲气囊三种,囊式空气弹簧结构比较简单,制造容易,因此成本低,又因为工作时橡胶膜的曲率变化小,所以作用寿命长。

囊式空气弹簧的刚度与气囊的气室容积,气体压力和气囊的曲数有关,增加气室容积能够降低刚度。在气室容积相同的条件下,气囊曲数越多弹簧刚度越低,而过多的气囊曲数,又使得弹簧的横向稳定性变坏。因此,多数情况下采用双曲气囊。

膜式空气弹簧:根据橡胶气囊止口与接口的接连方式不同,膜式空气弹簧又有约束膜式和自由膜式两种。约束膜式空气弹簧一般用螺栓夹紧密封,自由膜空气弹簧则采用气囊内压力自封。

膜式空气弹簧是由盖板和深拉钢板或铸钢制成的底座,及在它们之间安放的圆柱橡胶气囊构成的。通过气囊的挠曲变形实现整体伸缩。改变气囊长长,可增加空气弹簧的工作行程,底座表面经镀铬处理,可减小摩擦。虽然膜式空气弹簧不如囊式的使用寿命长,而且在相同的尺寸及空气压力的作用下承载能力也小,但是膜式空气弹簧的刚度低于囊式空气弹簧,并且可以通过改变底座形状的方法控制有效面积变化率来获得较为弹性特性。

复合式空气弹簧:它介于囊式和膜式之间,并具有膜式空气弹簧刚度较低的特点,复合式空气弹簧制造复杂,成本略高。

空气弹簧气囊工作环境恶劣,不仅压力,温度不断变化,而且容易受到酸碱物质的侵蚀。因此,要求气囊能适应-40-70度的温度变化,并能抗磷化物质,酸碱溶剂和臭氧等的侵蚀。要求在24h内压降不超过0.02mpa.

2)导向机构由于空气弹簧只能承受垂直载荷,所以在空气悬架中必须设计导向机构来传递纵向力和侧向力。导向机构的形式很多,在半挂车中通常采用钢板弹簧导向机构。钢板弹簧不仅起导向作用,也兼起一部分弹性元件的作用。对于混合式空气悬架来说,汽车的纵向力,侧向力及其力矩均由钢板弹簧承受,这就要求钢板弹簧具有很高的强度和刚度。

3)高度控制阀高度是空气悬架系统的一个重要组成部分,其作用是调节空气弹簧的内部气压,并使空气弹簧保持在一定的高度范围内,来平衡外界的载荷,一般高度控制阀在24h内气压降要小于0.02mpa,疲劳次数应大于300万次,工作最大压力一般为1.5-2mpa.适用温度范围为-40-70度。

高度控制阀根据阀门开闭对车身振动的反应时间分为即时型和延时型。所谓即时型高度控制阀即当车身有相对位移时,高度控制阀就有充放气运作。这就要求控制设备精度高,气路密封性好,同时所有的控制设备都处在工作状态,工作负荷较大,延时型高度控制阀避免了这种频繁工作的现象。延时型高度控制阀一般延时1-6s,通常使用时间为2-4s,即在两个振动动周期左右不敏感,以节省压缩空气无益的消耗,减小了阀中各零部件的磨损,延长了高度控制阀的使用寿命,减小了噪声。延时型高度控制阀的延时装置主要是用来产生阻尼,延缓阀门的动作。延时装置常采用弹簧,油压,风压或它们的联合结构。从国内外来看,延时型高度控制阀是普遍采用的一种阀体。

空气悬挂系统由什么组成

一,空气悬架系统包括空气弹簧减震器导向机构和车身高度控制系统。二,空气悬架系统一般采用囊式空气弹簧。三,减震器主要用来衰减车身的振动,是导向机构由纵向推力杆和横向推力杆等组成。用来传递车身和车桥之间的纵向力侧向力及驱动制动时产生的力矩。五,车身高度控制系统分为机械式控制系统和电控控制系统。

关于空气悬挂系统结构原理,空气避震和空气悬挂的介绍到此结束,希望对大家有所帮助。